
Scalable Framework for Representation and Exchange of Network
Measurements

Jason Zurawski, Martin Swany Dan Gunter
Department of Computer and Information Sciences Lawrence Berkeley National Laboratory

University of Delaware, Newark, DE 19716 Berkeley, CA 94720
{zurawski, swany}@cis.udel.edu dkgunter@lbl.gov

Abstract

Grid and distributed computing environments are
evolving rapidly and driving the development of sys-
tem and network technologies. The design of applica-
tions has seen an increased emphasis upon adapting
application behavior based on the performance of the
network. In addition, network operators and network
researchers are also quite interested in gathering and
studying network performance information.

This work presents an extensible framework for the
storage and exchange of performance measurements.
Leveraging some existing storage and exchange mech-
anisms, the proposed framework is capable of han-
dling a wide variety of measurements and delivers per-
formance comparable to that of faster, less flexible, ad-
hoc solutions.

1 Introduction

The collection of network measurements for use in
distributed and Grid environments is desirable for en-
abling adaptive usage of resources, as well as for op-
erational support and utilization information for ac-
counting. Many tools exist to measure the various
“characteristics” of the network, such asbandwidth,
delay, and loss. Statistical information derived from
these measurements is needed for predicting future
performance, and for the tuning of networked appli-
cations. However, without a consistent and readily
available set of names for, and representations of this
diverse pool of information, analyses spanning mul-

tiple organizations and network measurement infras-
tructures are difficult to perform and validate.

In this paper, we describe and investigate an exten-
sible system for storing and processing performance
information in distributed environments, such as the
Grid. We limit the scope of our description and results
to the system’s primary goal of storing and processing
network metrics, but note that the design is generaliz-
able to other types of performance information.

As we are focused on programmatic access to mea-
surements, storage and exchange formats play an im-
portant role in the overall design of the system. The
formats employed in this work were developed as part
of work within the Global Grid Forum (GGF) Network
Measurements Working Group (NM-WG) [13] and are
currently used in several other projects [15,9,1,18,20].
To keep the representation of data as general as pos-
sible, a relatively abstract framework was developed
that explicitly separates the data values, which are ex-
pected to be frequently updated, from its less dynamic
metadata. In stable storage, this lends itself to a more
normalized layout for the measurement. On the wire
and in a Web Services [24] context, it forms the ba-
sis for an “include by reference” mechanism, allowing
implementations to eliminate redundant information in
a way that is independent of the specific data represen-
tation.

2 Problem Statement

There are potentially conflicting design goals that
motivate this work, such as the tension between in-
teroperability and flexibility. Agreeing on standard

mechanisms for sharing data in a large and diverse
group like the GGF [8] has made it clear that a single
interface and storage format is difficult to define, since
there are many different environments in which perfor-
mance information is gathered, used, and encoded. Of
course, any solution which is so rigid as to preclude the
inevitable advances in this area will not be successful.
Challenges aside, the goals of our measurement and
monitoring framework must facilitate:

• Normalized data encoding in canonical formats

• Extensibility to new data sources

• Flexible re-use of basic components

• Use of existing solutions and technologies

• Language/Implementation independence

One key facet of our problem is the apparent trade-
off between extensibility and efficiency for Grid per-
formance monitoring systems. On the one hand, the
Grid community has adopted World Wide Web Con-
sortium (W3C) [23] standards, such as eXtensible
Markup Language (XML) [27] and Simple Object Ac-
cess Protocol (SOAP) [19] to enable portability and
interoperability. On the other hand, we know that the
performance of the information system is important in
that overhead incurred there affects the performance of
the entire system. Additionally, there are the storage
requirements of the data. Storage of a large number
of encoded data elements, all of which demonstrate a
similar pattern yet contain different information, is in-
efficient.1 We address these two conflicting goals in
turn.

2.1 Measurement Representation

The basic goal of the storage and exchange formats
portion of the framework we present here is to allow
the separation of rapidly changing information, hence-
forth the “data”, from relatively constant information,
or the“metadata”. For example, a networktraceroute
would have as data the IP address and time of each
network probe, and would have as metadata the source
and destination host of the entire probe along with the

1Clearly, this type of storage is quite compressible, but that can
cause problems for searching, etc.

tool used, its parameters, etc. This economy leads to
efficiency. Metadata can then be stored, searched, and
transmitted separately from the more dynamic data.
Identifiers for explicitly linking the metadata and data
sections, even when they do not appear in the same
physical location, are built into the framework.

A secondary goal of the framework is re-usability
within the broader scope of grid information exchange.
Many information exchange schemas, including ear-
lier versions of the GGF NM-WG schemas, had sepa-
rate request and response sub-schemas. The approach
presented here separates the semantics of the exchange
pattern from the semantics of the data representation.
That is, a common representation of data and meta-
data is used for both requests and responses, simpli-
fying the schema considerably and allowing for sub-
sequent re-use of base definitions. This becomes even
more desirable if you consider communicating mea-
surements in a notification framework such as WS-
Notification [25].

2.1.1 Measurement Encoding

XML provides the capability to produce self-
describing documents. This has many advantages,
but efficiency is not one of them. In the words
of the XML 1.0 specification, “Terseness in XML
markup is of minimal importance” [27]. This in-
efficiency makes both serialization and deserializa-
tion much slower than more machine-friendly formats.
However, the gains in interoperability from text-based
self-describing formats are also important for large
distributed systems, as evidenced by the explosion of
XML representations and toolchains in this area. We
attempt to strike a happy medium by minimizing the
redundant elements in the XML representation, and,
when even that won’t do, including support for spec-
ifying out-of-band mechanisms (e.g., binary formats)
for transmitting the bulk of the data.

This approach to encoding can also be viewed as
normalization. By storing the data entries in a nor-
malized fashion and referring to external metadata as
appropriate, we can address all our stated problems.
By providing for simple recurring event storage in
a minimal format, we can support high-performance
data transfers and the automatic assembly of complex,
self-identifying XML structures for simple applica-

tions and for human consumption. We will present
below performance results that show that the schemas
described here impose minimal overhead in compari-
son to raw SQL operations.

2.2 Measurement Exchange

The encoding system we have defined lends itself
to the construction of an interface to store and query
messages. The well defined input and output formats
disallow deviation, while remaining expressive. Web
Service tooling such as Web Services Description Lan-
guage (WSDL) [26] allows for the easy specification
of capabilities as well as connection mechanisms of
a web based service. SOAP provides a simple way
to manage connections as well a known encapsulation
mechanisms for sending information.

Client and server sides may employ any of the nu-
merous flavors of XML parsing software. Our expe-
riences have led us to settle upon classic implemen-
tations, such as the Document Object Model (DOM)
[29] and the XML Path Language (XPath) [30], to ex-
tract information from the exchange messages. This
hybrid approach to parsing has matured due to intrica-
cies in each implementation. Other methods explored
in this work include the cElementtree XML parsing li-
brary [7] for the Python [16] programming language,
which operates on data streams; this is contrary to
DOM needing to load the entire XML document into
memory.

3 Schemas

The framework we present here is comprised of two
major parts: the XML schema definition for measure-
ment instances, and the software designed to store and
deliver these instances on demand. We present a basic
overview of the general schema with the understand-
ing that specialized schemas may be developed from
this initial pattern to fit the many different tools and
characteristics of network measurement. This discus-
sion will be followed by an overview of the prototype
we have designed to manage interface utilization data.

3.1 XML Schema Language

The standardized serialization for the NM-WG data
is XML. Therefore the canonical machine-readable

definition of an NM-WG schema is an XML schema
language. The original such language was Docu-
ment Type Definition (DTDs) [6], which has now
been supplanted as thede factoschema language by
XML Schema [28]. However, for reasons of readabil-
ity and elegance, the primary schema language used
within the NM-WG is OASIS [14] standard RELAX-
NG [17]. Tools exist to perform an automatic transla-
tion from RELAX-NG to XML Schema where this is
appropriate.

A primary reason for using RELAX-NG was its in-
tuitive and readable “compact” syntax.2 To help read
the examples that follow, a brief summary of this syn-
tax follows. Allowed elements and attributes are pre-
fixed with the keyword ’element’ and attribute, with
their datatype enclosed in{curly braces}. Maximum
and minimum number of repetitions given with famil-
iar regular-expression symbols of ’?’ for zero or 1, ’*’
for zero or more, and ’+’ for one or more. Elements
and attributes can be joined by either a ’,’ indicating
sequence, a ’&’ indicating an unordered group, or a
’—’ indicating a choice. Arbitrary groups of the above
patterns can be assigned a name using the ’=’ operator.

3.1.1 NM-WG Base Schema

The major components of base schema are illustrated
in Figure 1. In this figure, the major sections, data and
metadata, are shown side-by-side with the subsections
listed vertically within each section.

The schema for the top-level message envelope
is shown below.3 The message envelope may con-
tain multiple metadata and data sections. The mes-
sage “type” allows distinguishing between storage and
query, for example, when the underlying communica-
tion system may not provide such information.

namespace nmwg =
"http://ggf.org/ns/nmwg/2.0/"

element nmwg:message {
attribute type { xsd:string } &
(Metadata | Data)+

}

The schema for the Metadata element is shown be-
low. Every metadata element must contain an “id” and

2Similar syntax summary of XML Schema would almost cer-
tainly occupy several pages.

3In all the schemas presented inline in the text, some small
details have been left out or modified to enhance readability. Full
schemas are available at [21]

Figure 1. NM-WG Base Schema

may contain an optional “metadataIdRef” (formerly
“metdataId”), which refers to another metadata sec-
tion. This is to allow the Metadata elements to be
“linked” for further reduction in storage overhead.

The metadata section is subdivided into three parts,
only the first of which is required:

• Subject – The physical or logical entity being de-
scribed. For example, a host pair or router ad-
dress. Like the subject of the sentence:Host A to
Host Bmeasured ICMP latency is100ms.

• EventType – The canonical name of the aspect of
the subject being measured, or the actual event
(i.e. “characteristic”) being sought. Like the ob-
ject of the sentence: Host A to Host Bmeasured
ICMP latencyis 100ms.

• Parameters – The way in which the descrip-
tion is being gathered or performed. For ex-
ample, command-line arguments totracerouteor
whether the round-trip delay packet used ICMP
or UDP. Like the descriptive clause of the sen-
tence:When you use100 byte packets,Host A to
Host B ICMP latency is100ms.

namespace nmwg = "http://ggf.org/ns/nmwg/2.0/"

Metadata =
element nmwg:metadata {

attribute id { xsd:string } &
attribute metadataIdRef { xsd:string }? &
Subject &
EventType? &
Parameters?

}

Subject =
element nmwg:subject {

attribute id { xsd:string }
}

EventType =
element nmwg:eventType {

text?
}

Parameters =
element nmwg:parameters {

attribute id { xsd:string }
}

The metadata schema would validate the XML in-
stance below. As in this example, the actual value of
something with an identifier can be omitted for effi-
ciency where it is provided by other context.

<nmwg:metadata id="1">
<subject id="2"/>
<nmwg:eventType>latency.oneway</nmwg:eventType>

</nmwg:metadata>

The schema for the data section is shown below.

namespace nmwg = "http://ggf.org/ns/nmwg/2.0/"

Data =
element nmwg:data {

element id { xsd:string } &
element metadataIdRef { xsd:string } &
(

CommonTime? &
Datum*

)
}

CommonTime =
element nmwg:commonTime {

Time &
Datum*

}
Datum =

Time
}

The ’CommonTime’ section allows the common
case of factoring out a set of data that is associated
with a single time range or timestamp. Time receives
this special treatment because it is the only required
part of any datum. If any data is present, the only re-
quired content for each datum is a time stamp or range.
All other content will be specified in measurement-
specific schema extensions as necessary. Note that by
extending the EventType of the name into the names-
pace, effectively creating a unique name for each type
of event, the timestamp may be all that is necessary.

Time related elements reside in a sub-namespace
from the base. This separation enables the use of time

in extension namespaces, as well as enforces that this
implementation of time is not a “requirement”. The
schema for the time namespace is shown below.

namespace nmtm =
"http://ggf.org/ns/nmwg/time/2.0/"

Time =
element nmtm:time {

attribute type { xsd:string } &
(

TimeStamp |
(

StartTime &
(

EndTime |
attribute duration { xsd:string }

)
)

)
}

StartTime =
element nmtm:start {

attribute type { token } &
attribute inclusive { token }? &
TimeStamp

}

EndTime =
element nmtm:end {

attribute type { token } &
attribute inclusive { token }? &
TimeStamp

}

TimeStamp =
attribute value { xsd:string } |
element nmtm:value { xsd:string }

3.1.2 Schema Extension

The abstract schema will often be extended to repre-
sent the data returned from actual measurements. We
use XMLnamespacesto allow independent extensions
of the schema to co-exist without central coordination
or “vetting”. A namespace is a specific Uniform Re-
source Identifier (URI) that is similar to a Uniform Re-
source Location (URL) resembling the well known for-
mathttp://www.domain.org .

The basic approach is to replace the base schema’s
elements with elements of the same name, but in
the namespace of a specific organization. For ex-
ample, if members of a school’s computer science
department create a new schema, it should be referred
to as a subset of a domain they have access to, i.e.
http://cis.udel.edu/ns/new/tool/1.0/ .

In addition, the namespace construct can represent
different versions of the same tool, or different schema
versions through the implicit naming scheme. This
feature fosters ease of transition between extension
namespaces in the face of changing tools and measure-
ments.

Building on the base schema section above, we
present a subset of the interface utilization schema
used in our implementation. This schema is capable
of describing the specifics of a network interface, al-
though for testing purposes the schema remains rela-
tively simple in relation to “real-world” needs.

namespace utilization =
"http://ggf.org/ns/nmwg/characteristic/utilization/1.0/"

namespace nmwgt =
"http://ggf.org/ns/nmwg/topology/2.0/"

include "nmbase.rnc" {
Subject = UtilizationSubject

}

UtilizationSubject =
element utilization:subject {

attribute id { xsd:string } &
Interface?

}

Interface =
element nmwgt:interface {

element nmwgt:ipAddress { {
xsd:string &

attribute type { xsd:string }
}? &
element nmwgt:hostName { xsd:string }? &
element nmwgt:ifIndex { xsd:string }? &
element nmwgt:type { xsd:string }? &
element nmwgt:direction { xsd:string }?

}

The schema would validate for an XML instance
such as this:

<nmwg:metadata id="1">
<utilization:subject id="2">

<nmwgt:interface>
<nmwgt:ipAddress type="v4">128.4.133.163</nmwgt:ipAddress>
<nmwgt:hostName>moonshine.pc.cis.udel.edu</nmwgt:hostName>
<nmwgt:ifName>eth0</nmwgt:ifName>
<nmwgt:ifIndex>2</nmwgt:ifIndex>

</nmwgt:interface>
</utilization:subject>
<nmwg:eventType>ifInOctets</nmwg:eventType>

</nmwg:metadata>

This extension schema, and subsequent example in-
stance documents, make up the first part of our frame-
work. Constructing tooling to accept, parse, and ex-
tract meaning from these instances becomes the cen-
tral theme of the next section.

3.2 System Design

The storage and exchange format defined previ-
ously forms the basis for the service we present. In-
put and output to the service consists of messages con-
taining varying amounts of information. With this re-
quirement well defined, we must accomplish the goals
of physically sending each message across a transport
medium, parsing useful information from the transient
messages, and performing the “task” assigned to each

message. Our service chooses to implement the tasks
of “storage” (accepting data to store internally) and
“request” (returning data for a known pattern). The
following sections lay out general solutions to the is-
sues at hand. Specifics to our architecture will be fea-
tured in Section 4.

3.2.1 Message Transport

Interoperability with existing technologies is always
a consideration when designing new software for the
Grid. Creating a proprietary encapsulation and trans-
mission protocol would not benefit the community. An
obvious choice for transmission of application layer
messages is SOAP. Care was taken when designing
our SOAP bindings, specifically to the message en-
coding format. One must proceed cautiously, as there
are only four acceptable ways to accomplish the same
goal. These four choices arise from two independent
choices: “RPC” or “document” structure, and “literal”
or “encoded” XML.

To construct a message it is necessary to choose a
structure and an encoding. A description of each is
well beyond the scope of this paper; for our purposes,
we consider the two most common methods:RPC-
EncodedandDocument-Literal.

As suggested by the nameRPC-Encoded, the abbre-
viation “RPC” indicates a remote procedure call, and
the word “encoded” refers to the use of a specialized
set of XML types designed to represent programming
language constructs such as arrays and directed graphs
– structures that are not fully representable in XML
Schema languages. For this and other reasonsRPC-
Encodedis on its way out due to interoperability issues
in many cases.

Document-Literalplaces all the structure for the
message (the whole “document”) in the same place
(the schema definition) as is; this method is thought
to be a “cleaner” and simpler approach. For interop-
erability and simplicityDocument-Literalis the best
approach to start with. However, many toolkits, par-
ticularly ones that focus on simple client-side APIs,
support only the olderRPC-Encodedstyle.

3.2.2 XML Parsing

SOAP messages themselves are constructed with
XML, and when using theDocument-Literalformat,

contain our verbatim message. A natural thought pro-
gression leads to the suggestion of bypassing all “of-
ficial” SOAP parsing software on the client and server
ends in favor of creating a custom parser to handle our
message format, as well as the additional SOAP tags.
This saves the step of needing two rounds of parsing
on the same data.

The advantages and weaknesses of parsing strate-
gies must be weighed when choosing an approach.
The Document Object Model (DOM), for example
features a “document oriented” way of dealing with
an XML instance. Using DOM allows for the total
parsing, extraction, and recognition of all parts of an
XML element and its descendants. Efficiency is not a
strong suit of DOM, because the entire document must
be loaded into main memory upon parsing. As the doc-
ument size grows, performance will certainly suffer.

XPath, which uses portions of DOM internally, on
the other hand, features a “programmatic” way of find-
ing specific elements within an XML instance. XPath
does not have a memory requirement quite as large
as DOM, and therefore can extract useful chunks of
a document while ignoring other portions. XPath is
not the right tool to consider when total extraction of
information is required.

We have come to a compromise that allows for
the simultaneous use of each parser for certain situ-
ations. When used together, we are able to extract
useful metadata and data chunks via XPath; the small
chunks are much easier for DOM to parse in search of
values and meaning. Thus, a speedy solution to XML
parsing is devised, averting issues of memory manage-
ment as well as providing a total and correct evaluation
of XML instances.

3.2.3 Information Storage and Retrieval

Back-end storage is an important consideration in any
system. Speed of insertion and searching can easily
become a bottleneck in high demand systems. Three
basic options exist for storage: Relational database,
XML database, flat file storage.

Relational databases features a well known and eas-
ily programmable interface, reasonable performance,
and wide acceptance. Finding API bindings for the
major database vendors is a simple task, and all ma-
jor operating systems support some form of RDBMS.

XML databases are an emerging technology that sup-
port the insertion and ability to index based on XML
elements. At the present time there are few offerings
from this realm and bindings exist only for a hand-
ful of languages. Flat files are of course an easy and
accessible solution, but will require programmatic in-
tervention to monitor and keep track of the location of
specific information.

Future incarnations of our framework will no doubt
explore these new technologies directly, and may uti-
lize a hybrid approach as demonstrated with our XML
evaluation. Utilizing a single RDBMS makes sense
from both an interoperability and performance stand-
point at this current point in time.

4 Implementation

Driven by the analysis in the previous section we
have implemented a client/server architecture capable
of storing and delivering XML messages conforming
to the NM-WG schemas. Figure 2 describes the con-
ceptual design of our measurement framework. We
have implemented both the client and server portions
and have utilized the service to exchange interface uti-
lization data.

Figure 2. Framework Overview

4.1 Server

The server was implemented in the Perl program-
ming language. Perl features rich APIs for XML
parsing, SOAP operations, and HTTP server capabil-
ities. As stated in the previous section, support for
Document-Literalis limited in most implementations,
and Perl is no exception. A customized HTTP server
was implemented for the receipt and transmission of

SOAP messages. SOAP libraries were used for the
sole purpose of creating envelopes to send data be-
tween components.

XML processing on the server side consists of ex-
tracting the message from the SOAP envelope, and us-
ing DOM to parse the metadata blocks and related data
blocks (in the case the message is meant to store infor-
mation). Request messages are understood to contain
no reference to data, so metadata alone is extracted. In-
formation is gathered and formed into SQL statements
(“insert” statements when we are storing data, and “se-
lect” statements for queries). When requesting infor-
mation the database will return relevant results which
are encoded into XML before being sent back to client
applications.

4.1.1 Database

The MySQL database management system was uti-
lized in this work. This database was chosen for its
efficiency, size, and API interaction. A single table,
wherein each row storing both metadata and data was
constructed. Although this method consumes more
storage space, we avoid the need to join multiple tables
in the case of a query. Arbitrarily large XML dataset
requirements may force future versions to implement
multiple tables within the database.

4.2 Client

Client applications must have the capability to cre-
ate XML messages in the NM-WG format, wrap these
messages in SOAP envelopes, and contact a known
server. The response from the server will also be in
XML format; parsing software must be employed to
extract meaning. Two clients have been constructed
thus far; one implemented in Perl, the other in Python.
Each client is interoperable with the Perl server.

4.2.1 Perl Implementation

As described in the Perl server, the Perl client uses the
same basic SOAP and parsing operations. The client
does not need to implement an entire HTTP server, but
must send its XML message through a socket to the
known address of the server. A response is also ac-
cepted through the socket. After receipt it is parsed
for meaning and can be displayed, or the output may

be funneled to a variety of other applications. For
example, [20] uses interface utilization information
to construct network “weathermaps” (graphical repre-
sentation of network utilization) as well as utilization
graphs over a time range.

4.2.2 Python Implementation

For efficiency, the Python implementation uses a
mostly hand-rolled Web Services stack that is a combi-
nation of Frederick Lundh’s cElementtree XML pars-
ing library [7], and the standard Python HTTP library.
The implementation is simplified in several ways, but
as a result the entire WS stack was implemented in
only a few hundred lines of code. Even though Python
is a compact language, typical SOAP libraries still run
in the thousands of lines. With elementtree, serializa-
tion and parsing are both incremental, and therefore
memory usage is minimal. Although it is only a proto-
type implementation, the Python client holds out hope
that the NM-WG schemas do, indeed, allow the com-
plexity of the implementation to reside mostly outside
the details of the Web Services stack.

5 Experimental Results

To test the performance of this framework we
present tests of the Perl and Python client applications
requesting datasets of various sizes from the server. A
control test has also been designed to request the same
data sets but through simple SQL requests directly to
the database server (lacking XML processing steps).

We performed this experiment over a wide-area
network connection between Lawrence Berkeley Na-
tional Laboratory (LBNL) and the University of
Delaware (UD). The latency on this path was approxi-
mately75 milliseconds, and the (TCP) bandwidth as
measured byiperf [10] was about30Mbits/second.
The client host, at LBNL, was a2GHz single-
processor AMD Athlon XP 2400+; the server host, at
UD contains dual2.40GHz Intel Xeon processors.

Each implementation performed the same5
different-sized queries, returning result sizes from1
to 10, 000, with three variations on each asking for in-
formation from1, 2, or 3 router interfaces. Thus, the
total amount of data returned ranged from1 to 30, 000

items. Each of these (15) different queries was re-
peated5 times.

log num. results

lo
g

qu
er

y
tim

e(
s)

10^1 10^2 10^3 10^4

10^−0.5

10^0.0

10^0.5

10^1.0 perl

python

sql

Figure 3. Query performance

Figure 3 exhibits the query performance of all three
clients, for the three-interface variation of the query
only. Analysis revealed an almost identical pattern of
results for one and two interfaces. In each case, the
SQL client was surprisingly slower than both the Perl
and Python implementation for smaller numbers of re-
sults, becoming comparable for result sets in the hun-
dreds and then becoming the fastest for thousands of
returned items. In other words, the SQL implementa-
tion is shifted upwards but with a flatter slope, which
indicates additional per-query setup time. This pattern
is more pronounced with 2 and 3 interface queries, par-
tially because the SQL implementation performed sep-
arate queries for each interface, whereas the NM-WG
schemas naturally carried multiple metadata sections
(with a query of an interface in each) in a single enve-
lope. The smooth lines are calculated with Friedman’s
“super-smoother” algorithm [22]

The percent overhead, pictured in Figure 4, illus-
trates the “crossover” point between SQL and the

XML implementations more dramatically, partially
because it is a log-normal scale whereas the previous
graph used a log-log scale (to help show the linear
growth of query time vs. results). Previous graphs
demonstrated that there was very little variation within
a set of repeated measurements and that the pattern of
query times is very similar across the number of in-
terfaces being queried. Therefore, we can compare the
medians of the times for a given total number of results
(number of results * number of interfaces) to derive the
percent overhead for Python and Perl relative to SQL.
Again we use the “super-smoother” to help reveal the
pattern of the results.

num. results

%
 o

ve
rh

ea
d

10^0 10^1 10^2 10^3 10^4

−50

0

50

100

150

200
perl

python

Figure 4. Overhead of Perl and Python rela-
tive to direct SQL interaction

5.1 Analysis

The unusually poor times demonstrated by the SQL
client can of course be avoided. Experimental consid-
erations mandated “equal-footing” for the definition
of database queries. The SQL client essentially per-
forms the same queries that a request encoded with a
metadata block would invoke, and there is no ability
to streamline many requests in a single statement exe-
cuted across the WAN.

The performance gap exhibited by the Perl and
Python implementations can be attributed to parsing
technology. The DOM and XPath implementations in
Perl require significant memory, more so than parsers
capable of reading directly from a stream, such as
cElementtree in Python. Keeping a structure contain-
ing large result messages in limited memory space will
inevitably perform more poorly than processing the
message as a stream.

6 Related Work

In [2], the notion of a scalable system that en-
ables the sharing of measurements was explored. Our
work shares the common idea of striving to make di-
verse measurements available, although our approach
through the utilization of the NM-WG schemas of-
fers a uniform storage and exchange mechanism; this
simplifies the client and server interaction as well as
database requirements.

The IETF IPPM Working Group [11] aims to define
metrics that will be used to describe various internet
data delivery services and techniques. Recent work
has been done within the group to develop a registry
[12]. Similarly, we plan to construct a repository for
the registration and storage of schema definitions that
build upon the NM-WG base schemas.

The CAIDA [3] effort is focused on the collection,
analysis, and dissemination of internet measurements.
CAIDA established an “Internet Tools Taxonomy” [5]
to aid in the definition and categorization of measure-
ment tools that could be quite useful as a basis of the
namespaces used in this system. Our future plans in-
clude incorporation of this taxonomy into the GGF
namespace. Additionally CAIDA has begun to archive
and share network measurements and is developing a
schema for that effort [4].

7 Conclusion

We have presented a framework capable of storing
and delivering network measurements via a scalable
representation format. The base format, as defined
by the NM-WG, is complete, compact, and extensible
framework for the representation and storage of per-
formance measurements. This framework separates
metadata from data, providing a normalized and ef-

ficient means for transmitting and storing many mea-
surements. We have shown how this approach pro-
motes efficient and interoperable systems for exchang-
ing performance information in Grid environments.

Our approach allows full use of the Web Services
separation between schematic representation of the
data and the transport protocols used to send it between
parties. This allows the efficiency of data/metadata
separation to be augmented, where desired, by effi-
cient and appropriate wire formats.

Our framework features surprising performance to
that of common ad-hoc solutions, despite needing to
send and parse XML documents of various sizes and
levels of complexity.

8 Acknowledgments

The authors would like to extend thanks to the
members of the Global Grid Forum’s Network Mea-
surement Working Group. Without their encourage-
ment, and insight this work would not be possible.

References

[1] Network Performance Advisor. http://dast.
nlanr.net/Projects/Advisor/ .

[2] M. Allman, E. Blanron, and W. Eddy. A scalable sys-
tem for sharing Internet measurement. InPassive and
Active Measurement (PAM), March 2002.

[3] Cooperative Association for Internet Data Analysis.
http://www.caida.org/ .

[4] ISMA Data Catalog 2004 Workshop.
http://www.caida.org/outreach/isma/
0406/index.xml .

[5] CAIDA internet tools taxonomy. http://www.
caida.org/tools/taxonomy/ .

[6] Extensible Markup Language 1.0 (Third Edition).
http://www.w3.org/TR/REC-xml/ .

[7] The cElementTree Module. http://effbot.
org/zone/celementtree.htm .

[8] Global Grid Forum.http://www.ggf.org .
[9] INCA Test Harness and Reporting Framework.

http://inca.sdsc.edu/ .
[10] Iperf. http://dast.nlanr.net/Projects/

Iperf/ .
[11] IETF - IP Performance Metrics (IPPM).http://

www.advanced.org/IPPM/ .
[12] IETF - IP Performance Metrics Registry).

http://tools.ietf.org/wg/ippm/
draft-ietf-ippm-metrics-registry/ .

[13] Network Measurements Working Group (NM-WG).
http://nmwg.internet2.edu .

[14] Organization for the Advancement of Struc-
tured Information Standards. http:
//www.oasis-open.org/home/index.php .

[15] Performance focused Service Oriented Network mon-
itoring ARchitecture. http://monstera.man.
poznan.pl/wiki/index.php/Main_Page .

[16] The Python Programming Language.http://
www.python.org/ .

[17] RELAX-NG. http://www.relaxng.org/ .
[18] Stanford Linear Accelerator Center.http://www.

slac.stanford.edu/ .
[19] SOAP Specifications. http://www.w3.org/

TR/soap/ .
[20] StorCloud. http://www.vtksolutions.

com/StorCloud/2005/ .
[21] NM-WG schema and prototype repository.http:

//stout.pc.cis.ude.edu/NWMG/ .
[22] Friedman’s SuperSmoother. http://www.

maths.lth.se/help/R/.R/library/
modreg/html/supsmu.html .

[23] World Wide Web Consortium.http://www.w3.
org/ .

[24] Web Services. http://www.w3.org/2002/
ws/ .

[25] Web Services Notification. http://www.
oasis-open.org/committees/tc_home.
php?wg_abbrev=wsn .

[26] Web Services Description Language.http://
www.w3.org/TR/wsdl .

[27] Extensible Markup Language.http://www.w3.
org/XML/ .

[28] XML Schema language.http://www.w3.org/
XML/Schema.

[29] Document Object Model.http://www.w3.org/
DOM/.

[30] XML Path language.http://www.w3.org/TR/
xpath .

http://dast.nlanr.net/Projects/Advisor/
http://dast.nlanr.net/Projects/Advisor/
http://www.caida.org/
http://www.caida.org/outreach/isma/0406/index.xml
http://www.caida.org/outreach/isma/0406/index.xml
http://www.caida.org/tools/taxonomy/
http://www.caida.org/tools/taxonomy/
http://www.w3.org/TR/REC-xml/
http://effbot.org/zone/celementtree.htm
http://effbot.org/zone/celementtree.htm
http://www.ggf.org
http://inca.sdsc.edu/
http://dast.nlanr.net/Projects/Iperf/
http://dast.nlanr.net/Projects/Iperf/
http://www.advanced.org/IPPM/
http://www.advanced.org/IPPM/
http://tools.ietf.org/wg/ippm/draft-ietf-ippm-metrics-registry/
http://tools.ietf.org/wg/ippm/draft-ietf-ippm-metrics-registry/
http://nmwg.internet2.edu
http://www.oasis-open.org/home/index.php
http://www.oasis-open.org/home/index.php
http://monstera.man.poznan.pl/wiki/index.php/Main_Page
http://monstera.man.poznan.pl/wiki/index.php/Main_Page
http://www.python.org/
http://www.python.org/
http://www.relaxng.org/
http://www.slac.stanford.edu/
http://www.slac.stanford.edu/
http://www.w3.org/TR/soap/
http://www.w3.org/TR/soap/
http://www.vtksolutions.com/StorCloud/2005/
http://www.vtksolutions.com/StorCloud/2005/
http://stout.pc.cis.ude.edu/NWMG/
http://stout.pc.cis.ude.edu/NWMG/
http://www.maths.lth.se/help/R/.R/library/modreg/html/supsmu.html
http://www.maths.lth.se/help/R/.R/library/modreg/html/supsmu.html
http://www.maths.lth.se/help/R/.R/library/modreg/html/supsmu.html
http://www.w3.org/
http://www.w3.org/
http://www.w3.org/2002/ws/
http://www.w3.org/2002/ws/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsn
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/XML/
http://www.w3.org/XML/
http://www.w3.org/XML/Schema
http://www.w3.org/XML/Schema
http://www.w3.org/DOM/
http://www.w3.org/DOM/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xpath

	Introduction
	Problem Statement
	Measurement Representation
	Measurement Encoding

	Measurement Exchange

	Schemas
	XML Schema Language
	NM-WG Base Schema
	Schema Extension

	System Design
	Message Transport
	XML Parsing
	Information Storage and Retrieval

	Implementation
	Server
	Database

	Client
	Perl Implementation
	Python Implementation

	Experimental Results
	Analysis

	Related Work
	Conclusion
	Acknowledgments

